If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-20=-13
We move all terms to the left:
X^2+4X-20-(-13)=0
We add all the numbers together, and all the variables
X^2+4X-7=0
a = 1; b = 4; c = -7;
Δ = b2-4ac
Δ = 42-4·1·(-7)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{11}}{2*1}=\frac{-4-2\sqrt{11}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{11}}{2*1}=\frac{-4+2\sqrt{11}}{2} $
| 7(z+4)-2(z-4)=2(z-3)+2(z-3) | | 1000=65312.34*1000-(14x-1400000) | | 9v^2-12v+10=0 | | (x-2)/3=6 | | 1000=4000-4x | | 2/7x+12=3/7x-1 | | 6x^2+12x+13=0 | | 6x^2+12x-13=0 | | 5n-13=3(n+1) | | 6x^2+12x=-13 | | -0.20(5a-35)+8=-8(7a+1) | | 2(6c+1)-17=9c+3 | | 4x^2−28x+60=0 | | 100=13x-4 | | 4x2−28x+60=0 | | 3x+25+50=180 | | 2x^2+170=36x | | 2x^2-36x+170=0 | | -2.9x-7=-2.4x+1 | | -3x^2+6=-18 | | 10x^2+40x+40=0 | | 3(x+7)^2-10=23 | | 103+3x=180 | | 3n2+2=-15n | | 103+x+2x=180 | | 4x(6+3)=(4x6)+(4x3) | | x^2=-4(2x=3) | | -8-2=-2+2-y | | 21-42-35-18=x-27 | | x^2+100x-120=0 | | -2-42-4-21=x | | 6s+1=4s-2 |